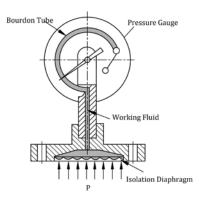


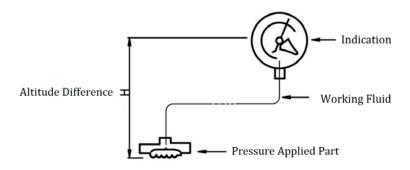
Diaphragm Series Pressure Gauge



Product Overview

Diaphragm pressure gauge (chemical seals) is composed of a conventional pressure measuring instrument, a connector and a diaphragm seal. This combination enables a general purpose pressure gauge to measure media of strong corrosion, high temperature, and high viscosity, containing suspended matter or crystallizing. Diaphragm gauges are universally used in petrochemical, alkali, and chemical fiber, pharmaceutical, metallurgical, and food industries.

Configuration Principle


This illustration shows the operating principle of the diaphragm pressure gauge. The diaphragm is deflected by the pressure of medium P, and an equivalent pressure P is generated. With transmitting through working fluid, the pressure P. deflect the elastic element of a pressure measuring instrument which thereafter shows the pressure value.

Level Difference of Diaphragm Pressure Gauge Seals Liquid

When a diaphragm pressure gauge is mounted with pressure gauge and diaphragm seal at different positions, the effect of level difference should be taken into consideration (especially for a diaphragm gauge with capillary). As the illustration shows, with a S.G of the working fluid at approx.1, and level difference of 1m, the pressure difference is approx.0.001 Mpa.

Level Difference=d.H d=S.G. of Working Fluid H=Altitude Difference

Temperature Influence of diaphragm pressure gauge

The temperature influence of a diaphragm pressure gauge is relative to expansion coefficient of the seals working fluid, rigidity of the diaphragm, and temperature of pressed part. When working temperature deviates from $20\pm5^{\circ}\text{C}$, the indication varies within 0.1%°C for rigid system, and within 0.1+0.025L%°C (L-length of capillary in m.) for flexible system (remote mounting). Diaphragm pressure gauges are filled with suitable working fluid according to different operating conditions.

Table1

Working Fluid	Temperature range for	Specific Gravity	Factor of Expansion	
	Diaphragm equipment	g/cm2	1/°C	
Glycerin-Water	-5-100°C	1.27	0.61×10^{-3}	
Solution				
Silicon (low viscidity)	-40-130°C	0.94	1.08×10^{-3}	
Silicon (high	-30-240°C	1.07	0.95×10^{-3}	
viscidity)				
Fluorocarbon Oil	-30-160°C	1.93	0.75×10^{-3}	
Vegetable Oil	-5-100°C	0.93	1.03×10 ⁻³	

Or other special working fluid

Corrosion-Proof Properties of diaphragm pressure gauge

Our Diaphragm Pressure Gauge satisfies customers1 requirements of both environmental conditions and flow conditions (corrosive media) based on its significant corrosion-proof properties. Choose various pressure gauges combined with appropriate separator according to environmental conditions. Choose material of diaphragm and housing compatible with corrosive media.

- ①.Diaphragm Material: SUS316, SUS316L, Monel (Cu30Ni70), Hastelloy(HC276), Tantalum (Ta), Fluoroplastic (PTFE)coated
- ②.Body Material: 1Cr18Ni9Ti, SUS316, SUS316L, Fluoroplastic (F4), Fluoroplastic Coated Stainless Steel
- ③.Gasket Material: Nitrile Rubber, Viton, Silicone Rubber, Fluoroplastic

Options for diaphragm material

Anti-corrosion materials

Table2

Corrosive Media	SUS316L	Tantalum	Monel	Hastelloy	Ti	PTFE
Vitriol(H ₂ so ₄)	Δ	0	\vee	V	×	\vee
Nitric acid(HN0 ₃)	\vee	0	X	\vee	\vee	\vee
Muriatic acid (HCI)	×	0	X	\vee	\triangle	\vee
Phosphoric	\vee	0	\vee	\vee	×	V
acid (H ₃ PO ₄)						
Acetate (CH ₃ COOH)	\vee	0	\vee	0	0	\vee
(NaOH)	0	Δ	0	0	\vee	\vee
Pure alkali (Na ₂ CO ₃)	0	0	0	\vee	\vee	V
Saleratus (NaHC0 ₃)	0	0	0	0	0	\vee
Chlorine (Cl)	Dry:V.	0	Dry: V .	V	Dry:×.	\vee
	Wet:×		Wet:×		Wet: O	
Bromine (Br ₂)	Dry:V.	0	Dry: O .	0	\vee	V
	Wet:△		Wet:×			
Ammonia (NH ₃)	\vee	×	×	0	0	\vee
Sea water (30%	\vee	0	0	0	0	>
NaCI)						

Remark: O-best; \triangle -conditional; \vee -use; \times -no using.

Standard material is SUS316L, corrosion-proof materials should be applied in normal temperature.

Model Selection

Table3

Item	Code	Description		
Basic Type	Y	General service pressure gauge		
Material	F	Stainless steel material (Option)		
Function	ZT	With resistance transmitting		
	N	liquid filled (anti-vibration)		
	XC	Snap-action electric contact pressure gauge		
	SZ	Three pointers		
	S	Others		
Diameter	60	Φ 60		
	100	Ф 100		
	150	Ф150		
		Others		
Connectors	Z	Direct Mounting (Medium < 80°C)		
*refer to table 5	Z1	Damper(Medium < 80°C)		
	Y1	Capillary(Medium < 200°C)		
	R1	Radiator(Medium < 200°C)		
	G1	Overpressure Protector(Medium < 80°C)		
	C	Special Angle(Medium < 150°C)		

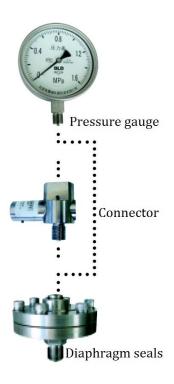

	Γ			
	R4	Siphon (1,2,4,6 meters)		
Diaphragm Seals	F8	Diaphragm seal with thread connection		
*refer to table6	F1	I-Shape Flange		
	F2	diaphragm seal with flange connection		
	F4	Angle Adjustable		
	F5A	Extended Thread		
	F5B	Extended Flange		
	F6	Tri-Clamp Connection		
	F7	Threaded Connection (Sanitary Type)		
	F9	In Line Diaphragm Seals		
Diaphragm	1	Stainless steel 316		
Material	2	Stainless steel 316L		
	3	Hastelloy		
	4	Monel		
	5	Tantalum		
	6	PTFE		
Range	M***	(Refer to range table 4)		
Option		Flange size and standard		

Table4

Table of Ranges						
Code	Ranges	Code	Ranges	Code	Ranges	
M500	-0.1~0MPa	M030	0.1Mpa	M180	4Mpa	
M510	-0.1~0.06Mpa	M040	0.16Mpa	M200	6Мра	
M520	-0.1~0.15Mpa	M060	0.25Mpa	M220	10Mpa	
M530	-0.1~0.3Mpa	M080	0.4Mpa	M230	16Мра	
M540	-0.1~0.5Mpa	M100	0.6Mpa	M240	25Mpa	
M550	-0.1~0.9Mpa	M120	1Mpa	M270	40Mpa	
M560	-0.1~1.5 Mpa	M140	1.6Mpa	M280	60Мра	
M570	-0.1~2.4 Mpa	M160	2.5Mpa			

Example

Connectors

G1 Overpressure Protector

R1 Radiator

R4 Siphon

Table5

Y1 Capillary

Z1 Damper

C Special Angle

Diaphragm Seals Table6

